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A mechanism is proposed for the manner in which the turbulent components 
support Reynolds stress in turbulent shear flow. This involves a generalization 
of Miles’s mechanism in which each of the turbulent components interacts with 
the mean flow to produce an increment of Reynolds stress at the ‘matched layer’ 
of that particular component. The summation over all the turbulent components 
leads to an expression for the gradient of the Reynolds stress r ( z )  in the turbulence 

where a?’ is a number, 0 the convected integral time scale of the w-velocity fluc- 
tuations and V(z)  the mean velocity profile. This is consistent with a number 
of experimental results, and measurements on the mixing layer of a jet indi- 
cate that a?‘ = 0.24 in this case. In other flows, it would be expected to be 
of the same order, though its precise value may vary somewhat from one to 
another. 

1. Introduction 
The mechanism that underlies the maintenance of Reynolds shear stress is 

at the heart of the dynamics of turbulent shear flow. In  the flow through a 
circular pipe, for example, it  provides an essential link between the axial pressure 
gradient and the wall drag. In  addition, the kinetic energy of the fluctuating 
motion itself is maintained by the interaction of the Reynolds shear stress with 
the mean velocity gradient. The aim of this paper is to attempt to uncover the 
mechanisms that are involved in the generation of this Reynolds stress and to 
relate its characteristics to other measurable properties of the turbulent motion. 

In  the early days of this subject, it became customary to seek arelation between 
the local Reynolds stress and the local mean velocity field by the use of either an 
eddy viscosity or a mixing length defined in one way or another. But as more 
detailed experiments were performed by Townsend, Corrsin, Laufer, and others, 
it became increasingly evident that any such relation was erroneous in principle, 
since the Reynolds stress was found not to be a local property of the motion but 
one of the whole field of flow. It is probably not unfair to say that, at this point, 
the problem remained for a number of years. A very great step forward was taken 
by Townsend in 1956 in the publication of his monograph The Xtructure of Turbu- 
lent #hear Plow, where he presented an inductive account of the processes involved 
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in the ‘classical’ turbulent shear flows. At about the same time Malkus (1956) 
offered a fresh view of certain aspects of the subject in which, by the use of a 
maximum energy dissipation principle, he was able to calculate a t  least the mean 
velocity profile in turbulent channel flow with extraordinary accuracy. The 
present analysis is much more mechanistic than Malkus’s approach and our goals 
are more limited, being restricted simply to the consideration of the processes 
involved in the production of Reynolds stress by the turbulent motion. 

In  the last few years there have been a number of developments that have 
indicated the need for a further understanding of this question. One of these is 
the observation that the addition of small concentrations of long chain polymers 
to water can greatly reduce the pressure drop in flow through a pipe or the drag 
coefficient’ in a turbulent boundary layer. These substances have little effect on 
the overall viscosity of the fluid, but they do endow it withvisco-elastic properties, 
and in some way these must influence the mechanism of the maintenance of 
Reynolds stress and so the pressure gradient in the flow. A similar effect has long 
been known in the turbulent flow of stratified fluids. When the mean density 
distribution is statically stable, the Reynolds stress is smaller than it would 
be in a homogeneous fluid with the same mean velocity field. It might be hoped 
that if the mechanism involved in the generation of Reynolds stress could be 
understood clearly, then some light would be shed on these observations also. 

It is self-evident that the Reynolds stress must be generated by the interaction 
between the fluctuating motion and the mean velocity field. The simplest model 
that we might conceive concerns the interaction between a uniform shear and a 
single Fourier component of the turbulent velocity field. If the self-interaction 
of the superimposed sinusoidal disturbance is neglected, the problem is a linear 
one and a solution can be found without too much difficulty. The analyses of 
Pearson (1959), Deissler (1961) and Moffatt (1965) are of this kind and some 
interesting results emerge. One of these is that there appears to be no unique 
relation between the (local) mean velocity gradient and the Reynolds stress 
supported by the turbulence; it depends in detail on the structure of the turbulent 
components over the whole field. This analytical result is, of course, consistent 
with the failure of the simple ‘eddy viscosity’ idea mentioned earlier. 

Such a model is, however, inherently deficient in its relevance to  laboratory 
flows. It is known from experiment, Corrsin (1949), that the Reynolds stress is 
associated with the energy containing components of the turbulence, whose 
length scales are of the same order as the scale of the mean velocity variation. 
Over these distances the Reynolds stress varies, as does the mean velocity 
gradient; indeed it is the variation in Reynolds stress that enters the momentum 
equation and not the stress itself. Since the results from models with constant 
mean velocity gradient have been rather indecisive and disappointing, one is 
prompted to ask whether it might not be more fruitful to seek a possible associa- 
tion between the variations inReynolds stress and those in meanvelocity gradient. 

In  a quite different context, that of inviscid laminar air flow over water waves, 
such an association has been found. Miles (1957)) in considering the generation 
of waves by wind, has discovered that a Reynolds stress is generated by the wave- 
induced air motion a t  the ‘critical layer’ where the wave speed equals the wind 
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speed, and that the stress difference across this layer is proportional to the ratio 
of the local mean profile curvature to slope. This stress is then supported by the 
wave-induced undulations in the air flow below the ‘ critical layer ), and continu- 
ally transfers momentum to the waves. This discovery has been developed further 
by Miles himself (1962) and by Brooke Benjamin (1959, 1960); it  has provided 
a cornerstone of our understanding of many problems involving the interaction 
of a mean and a small superimposed fluctuation motion. It is not unreasonable, 
then, to inquire whether this, or a similar process might be involved in the dy- 
namics of shear flow turbulence itself. This was indeed suggested independently 
by Dr Benjamin as a post-script to a general lecture given to the Eleventh 
International Congress of Applied Mechanics at Munich in 1964. To be sure, 
the laminar analyses developed so far are still short of being able to cope with 
the problem of turbulence because of the co-existence in this case of many inter- 
acting ‘disturbance’ modes. Before the question can be answered, an essential 
first step is to determine whether this mechanism or one like it occurs also when 
a turbulent, not laminar, shear flow is subject to a small periodic perturbation. 
The lucid discussion given by Lighthill (1962) suggests very strongly that it does, 
an assertion that is reinforced by the rather different approach of the next section. 

2. The matched layers 
Let us consider the interaction between a turbulent shear flow and a super- 

imposed, travelling, periodic velocity perturbation. The basic mean velocity field 
will, for the purposes of this section, be supposed to lie in the (2, y)-plane and to 
be a function of x alone; the orientation and velocity of the frame of reference 
being chosen so that the superimposed perturbation field is periodic in x, in- 
dependent of y and time independent-the frame moves with the perturbation. 
The total velocity field can then be represented as 

u = U(x) - c +U(x, 2 )  + u’(2, y ,  2 ,  t ) ,  (2.1) 

where U(z) is the mean velocity as observed in a frame of reference at  rest and 
c the velocity with which the perturbation field moves through the fluid. The 
separation (2.1) can be achieved unambiguously by taking averages successively 
along lines parallel to the y-axis (an operation indicated by the symbol ()) 
and over planes z = const. (indicated by an overbar). Thus 

(u) = U(z) - c + U(x, 2 ) )  (2.21 

and u = (u) = U(2) - c. (2.3) 
- - 

Then 8 = (%,”y; W )  represents the periodic perturbation field and u’ = (u’, v’, w’) 
the random velocity fluctuations of the turbulence. 

The incompressibility condition is V . u = 0 ;  the y-average of this equation 
yields 

(2.4) 
a a - {u (z )cosa -c+~}+-w = 0) ax a x  

where a is the angle between the mean velocity vector and the x-axis. This is 
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sufficient to ensure the existence of a stream function ‘J! for the y-averaged 
motion such that 

(2.5) I U(z)cosa-c+@ = aY/az, 
w = - a ~ l a x .  

Now, since the perturbation field 42 is periodic in x, the streamlines of the y- 
averaged motion can be represented as the real part of 

{ U ( ~ ) c o s a - c ) d ~ + $ ( z )  eikx = const., (2.6) 
= Iz: 

where the (arbitrary) lower limit of the integration is taken at the height z,, 
where U(x,) cos a - c = 0, or where the propagation speed of the disturbance 
just matches the component of the overall mean velocity field in the x-direction. 

FIGURE 1. Streamlines of the mean flow in the neighbourhood of the matched layer. The 
distance 13, characterizing the thickness of the layer is the maximum displacement of the 
streamline ‘F = k-lW(z,). 

In regions distant from z,, the streamlines of the y-averaged flow are merely 
smooth undulations on a uniform stream. If 

Re {$(z) ei”x} = - k-lW(z) cos [kx + ~ ( z ) ]  

(so that W(x) is the amplitude of the W-perturbation), it can be shown simply 
that the displacement of a mean streamline about its average height x1 is 

W(z1) cos [kx+s(z,)l 
k[U(x,)coscc-c] 

6 = x - z I  = 

Near zm, however, where the integrand in (2.6) vanishes, Y can be approximated 
by Y = +(z - 2,)2 U’(2,) cosa - k-lW(2,) cos [kx + .(zm)]. (2 .8 )  

The streamlines ‘I“ = const. < k-lW(z,) now represent closed loops centred on 
the height x, as illustrated in figure 1. The existence of these loops is simply a 
kinematical consequence of the non-vanishing of W at the height z,. 

It is important to remember that these mean streamlines do not coincide a t  
all with the particle paths; the flow is turbulent, and superimposed on the mean 
streaming are the random velocity fluctuations whose amplitudes may well be 
large compared with @ or W. The position z,, where the mean speed is just equal 
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to the wave speed of the perturbation, marks, in the context of laminar instability 
theory, the position of the ‘ critical layer ’. In  that situation, when the Reynolds 
number is large, the critical layer is a thin region where the vorticity perturbation 
is very large; it plays a central role in the development of an instability. In  the 
present problem, the region near z, will be found to be equally important, but 
it may not be particularly thin, nor may the vorticity of the wave-induced 
perturbation be especially large. To avoid confusion, and to reserve for the 
term ‘ critical layer’ its well established meaning in stability theory, this part of 
the flow will be called the matched layer. 

The thickness S,, of the matched layer is conveniently represented by the 
maximum displacement of the mean streamline Y = W(zm)/k,  so that from (2.8), 

There is a simple and important connexion between the Reynolds stress 
supported by the mean perturbation field U. and its vorticity 

a% aw 
ax ax * 

Q =  

For 

since aW/az = - a%/ax. The overall (or x) average of this expression yields 

and if the perturbation field vanishes at  infinity, say, 

(2.10) 

(2.11) 

This integral provides a means for estimating the Reynolds stress supported 
by the periodic perturbation. The basic mean flow has it vorticity distribution 
U’(z) cos a normal to the plane of the perturbation, and the periodic disturbance 
represents a small undulation in this. The variation !2 in mean vorticity ( w )  
at a fixed height is thus proportional to the magnitude of the undulations and to 
the mean vorticity gradient 

(2.12) 

provided S @ I U”(z)/U‘”(z)]. Away from the matched layer, 6 is given by (2.7), 
so that the covariance QW takes the form 

1 Q l  oc I - U”(2) 6 cos a\ ,  

- 

__ - U”(z) w(x) cos a 
kl U(x) cosa-cl  ’ Q W = A  (2.13) 

where the dimensionless number A is proportional to the correlation coefficient 
between the variations Q in vorticity and W in cross-stream velocity. Now, 



136 0. M .  Phillips 

in laminar, inviscid flow, the vorticity is conserved along each streamline, so 
that Q and W are in exact quadrature and their correlation coeEcient is zero. 
Consequently, regions of the flow away from the matched layer make no con- 
tribution at  all to the integral (2.11). In  turbulent flow, on the other hand, the 
motion is highly diffusive and vorticity is not, in general, conserved. Neverthe- 
less, in this region, the whole flow undulates slightly and the distance between 
neighbouring mean streamlines changes little so that the mean vorticity might 
still be expected to be very nearly constant along the mean streamlines. As a 
result, the correlation coefficient A would be expected to be small in this case 
also. In  view of the contributions to the integral (2.1) from the region of the 
matched layer, which, as is shown below, are certainly significant, it  is proposed 
in this context to assume that A is negligibly small. 

In the matched layer, on the other hand, the mean streamlines given by (2.8) 
represent closed loops and the variations in vorticity Q and W can be expected 
to be highly correlated. The non-vanishing of this correlation is, in fact, the basic 
dynamical hypothesis of this paper. The thickness of the layer, S,, is given by 
(2.9) and the variations in mean vorticity are proportional to - U”(z,) S, cos a. 
Thus 

The contribution to the integral (2.11) from the matched layer associated with 
this perturbation field is therefore 

__ 
(QW), cc - U”(z,) W(2,) 8, cos a. 

~ 

AT, P(QW),S,CC -pU”(z,) W(Z,)S~COSCC, 

or, from (2.9) (2.14) 

__ 
where A ,  is a numerical constant. Since (Q9) is positive when the basic mean 
vorticity O ‘ ( z )  decreases with 2 ,  A ,  is positive. This result was derived originally 
by Miles (1957) from an inviscid, laminar model. This discussion indicates that 
it remains true in turbulent flow although the numerical value of the constant 
A ,  (which is 7~ in Miles’s theory) is undetermined. Near a solid wall, however, 
this expression would be expected to become inaccurate for two reasons. In  
the first place, the mean velocity gradient in (2.8) changes rapidly across the 
matched layer-the streamline pattern loses its symmetry. Secondly, the mean 
vorticity gradient also changes rapidly within this region, and the further terms 
in the Taylor series expansion (of which (2.12) is only the first term) become 
dominant. 

3. The Reynolds stress gradients in turbulence 
Miles’s formula (2.14) was derived originally in the context of the air flow 

over surface waves. But in as far as the processes involved in the generation 
of Reynolds stress in the matched layers are concerned, the particular association 
of the perturbation with surface waves is not essential; the Same mechanism 
will be involved for each of the component fluctuations of the turbulence itself. 
The turbulent motion can be regarded in a Fourier decomposition as the super- 
position of a large number of small travelling perturbations, spatially periodic 



Reynolds stress in turbulent shear flow 137 

in the (x ,  y)-plane, each of which will interact with the mean flow in the manner 
described above. 

The turbulent velocity field in the shear flow will be represented as 

ui(x, t )  = dBi(k, n, z )  ei(k*x+nt), sh I n  

where the integration is over the horizontal (say) wave-number plane and over 
all frequencies n. For the sake of simplicity, the turbulence is supposed statistic- 
ally homogeneous in horizontal planes, though not in the vertical. The Fourier- 
Stieltjes transform dB, is also, of course, a function of the vertical co-ordinate 
z. It is important to notice that the wave-number k and frequency n are both real, 
so that for each component dB(k, n, z )  there corresponds a real propagation 
velocity -nk/k2 in some horizontal direction. This is not to say that all com- 
ponents propagate (or are convected) at  the same speed; for a given k there will 
be found in the turbulence arange of frequencies n over which there are significant 
amplitudes laB(k,n,z)l and so a range of convection velocities. But for any 
given component in the decomposition (3.1), with k and n both specified, the 
convection velocity is unique. Provided this is equal to the component in the 
direction of k of the mean velocity a t  some height z in the flow, there exists a 
matched layer for this component with its associated contribution to the Rey- 
nolds stress. 

Consider, then, the component with some given wave-number k having its 
matched layer at  some given point z,, that is, having the particular frequency 

n, = - k .  U(z,). (3.2) 

The contribution to the mean square vertical velocity fluctuation (w2 in equa- 
tion (2.14)) from components in the range (dk ,  d n )  about k ,  n, is given by 

Y33(k,  n,, 2) dkdn, 
where 

From (2.14), the increment of Reynolds stress supported by this small range of 

in the direction of the wave-number k ,  or this times cos a in the direction of the 
mean stream U. For the components of a given wave-number, the range of fre- 
quencies dn about n, corresponds to a range dz in the position of the matched 
layer, for, from (3.2), 

dn = - kU’(z,) cos adz. 

Thus drk = A,pU”(z,) cos2aYQ3(k, n,, z )  dkdz, 



138 0. M .  Phillips 

and the contribution from all the wave-numbers of the turbulence with their 
matched layers a t  z, is 

dT = A ,  pU”(z,) dz cos2aY33(k, n,, z )  dk, (3.5) s 
the integration being over all wave-numbers and correspondingly over fre- 
quencies on the plane n, = - k . U(z,) in wave-number, frequency space. 

This expression gives the increment of Reynolds stress T over a small range 
dz about any level z,, so that it can be written 

where pe, the apparent ‘eddy viscosity’? is 

pe(z) = A ,  p ~ o s ~ a Y ~ ~ ( k ,  n,, z )  dk. s (3.7) 

Before the implications of this rather surprising result are discussed, it will be 
shown how (3.7) can be interpreted simply in terms of measurable physical 
properties of the turbulence. 

From its definition (3.3), Y33(k ,  n, z )  is the Fourier transform of the covariance 
between the vertical velocity fluctuations u3 = w at the level z a t  points with 
horizontal separation r and time delay t. The inverse relation is 

w(x,t0) w ( x + r , t , + t )  = Y33(k,n,z)eiOr.r+nOdkdn, 1s 
If, however, the covariance is measured in a frame of reference moving with the 
local mean velocity U(z), then in this frame the spatial separation between the 
two points is r’ = r- U(z) t ,  

and w(x, to) w(x + r’ + U(z) t ,  to + t )  = / P 3 . ( k ,  n, z )  ei@.r’)+i@.u+n)t dkdn. 

Finally, if r‘ is taken as zero (that is, if the covariance is measured as a function 
of time at  a point moving with the mean velocity of the fluid at the level z) ,  
this expression reduces to 

W(x, to) w(x + U(Z) t ,  to + t )  = ww), say, 

Thus jrn -m ww’dt =srn -m {/sY33(k,n,z)eiOr.u+n)ldkdn I dt 

= / [Y3 , (k ,n , z )6 (k .U+n)dkdn  

= /kY33(k ,  - k .  U, x )  dk, 

t Note that this is not the usual definition. 
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from the theory of generalized functions (see, e.g. Lighthill 1958), where 6 
represents the Dirac delta function. The integral on the left can be expressed in 
terms of the integral time scale 0 of the w-velocity fluctuations in a frame of 
reference moving with the local mean velocity: 

so that lkYss(k, -k.U,x)dk = 2 3 0 .  (3.10) 

This integral is identical with that in (3.7) except for the factor cos2cc that 
suppresses contributions from the wave-numbers that are nearly normal to the 
plane of shear. The ratio of the one integral to the other depends on the directional 
distribution of YZ3 in the k-plane; if, for example, the w-velocity fluctuations 
were statistically isotropic in the planes x = const., then the integral in (3.7) would 
be just one half of (3.10). In  fact, these fluctuations are far from isotropic, but in 
any event, the ratio is a pure number that may vary to some extent from one 
flow to another. Consequently (3.7) can be written as 

p&) = d p 2 0 ,  (3.11) 

where d is a dimensionless constant. Because of the anisotropy of shear flow 
turbulence, with eddies elongated in the flow direction, the spectral density of 
wave-numbers near cc = 2 &r is large, and consequently d must be expected to 
be significantly smaller than A,. 

These results (3.6) and (3.11) have diverse implications. An important principle 
that they display is that the Reynolds stress is not a local property of the fluid 
motion, as has long been known experimentally. They do assert, however, that 
in a sense the stress gradient is a local property to this approximation; i t  involves 
only the properties of the motion at  the height x but it does require specification 
of 0, which is dependent on the time history of the turbulence. Also, they show 
quite clearly the importance of the energy-containing eddies in supporting the 
Reynolds stress-the ‘eddy viscosity’ is in fact proportional to the kinetic 
energy density of the vertical velocity fluctuations. Finally, the appearance of 
the convected integral time scale 0 in (3.11) shows that the longer the w-fluctua- 
tions remain coherent, the greater are their contributions to the stress gradient. 

Similar expressions can be derived for flow in a pipe, which is statistically 
homogeneous in the axial direction and which possesses axial symmetry. The 
steps of the previous two sections must be repeated with due regard for the con- 
figuration. The response must be found of the turbulent motion to a perturbation, 
in which in general the lines of constant phase are helices. The relation analogous 
to (2.10) is found to be 

__ I d  ~ 

QW = ---(r@W), 
r dr 

where Q here represents the variation in the vorticity component directed along 
the lines of constant phase, W represents the radial component of the perturbed 
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velocity and 
in this vorticity component are proportional to 

the component orthogonal to these two directions. The variations 

(cf. equation (2.12)), where U ( r )  is the mean axial velocity gradient. The details 
will not be given here since the ideas are in essence the same, though the analytical 
representations are a little less simple. The end result is that 

(3.12) 

- 
where rrz = -puw 

is the Reynolds stress in the axial direction across an element of area normal 
to the radius and pe has the same form as (3.1 1). 

4. Some applications 
The results presented in the previous section may be useful in three ways. 

Besides displaying the way in which an ‘eddy viscosity ’ emerges naturally from 
this mechanism involved in the generation of Reynolds stress, they allow some 
immediate predictions and comparisons with experiments and also provide a 
basis for further hypothesis and approximation. 

One immediate inference is that, provided 0 does not vanish, the Reynolds 
stress in the interior of a turbulent shear flow with a mean velocity distribution 
U(x) has extrema when and only when the profile curvature vanishes, regardless 
of the variation of pe with z. There are a number of flows in which this prediction 
can be compared with experiment. Probably the most striking is turbulent plane 
Couette flow, in which the shear stress is independent of x ,  and so from (3.6), the 
mean velocity profile is linear in the central region of the flow. This is a rather diffi- 
cult motion to achieve experimentally, but some mean profile measurements have 
been made by Robertson (1959). These are summarized in figure 2, and although 
their precision is not high, it it  evident that outside the wall regions, the mean 
velocity gradient in all cases is nearly independent of z. Another flow in which 
the mean velocity field is very nearly a function of x alone is the turbulent wake 
of a cylinder and Townsend (1956) has summarized a number of experimental 
studies. From these, it  is found that r is a maximum when z = O-ZO[(x - xo) d]$, 
where (x - xo) is the distance downstream from the virtual origin and d is the 
cylinder diameter. The point of inflexion in the mean velocity profile occurs at 
x = 0.21 [(x - xo) d]*. Again, in a plane jet, Bradbury’s (1965) measurements 
show that a broad maximum in the shear stress occurs in the neighbourhood of 
x = 0.756 where 6 is the local jet thickness. The point of inflexion of the mean 
profile is less well defined, but lies between 0.66 and 6. In boundary layer, pipe 
and channel flows, the Reynolds stress gradient vanishes nowhere in the interior 
of the fluid, and the mean velocity gradient is monotonic. 

These points of agreement are encouraging, but there are some more quanti- 
tative comparisons that can also be made. If, for symmetry or other reasons, the 
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Reynolds stress vanishes a t  some point x,, where the mean velocity gradient is 
zero (for example, at the centre line of a channel or of a cylinder wake), then 
(3.6) can be integrated by parts to give 

1 *c I 1 I 

o a  
0 .  

A AOa 
0 

A- 

A -  

A 0  

A m  

0 

Qy 

OA 
a 

D 

r .0  

0 

-1.0 I I I I - -  
- 20 0 20 

u- U ( 0 )  

u* 

FIGURE 2.  Mean velocity distribution in plane Couette flow, with distance 26 between 
plates. The measurements are by Robertson (1959) ; 0, at Reynolds number 

R = U ( 0 )  b/w = 1.5 x lo4;  A, a t  R = 1.1 x lo4 and 0,  at R = 5.5 x lo?. 

If ,ue is independent of z over the interval (or over the part of it in which the mean 
velocity varies) then the last term vanishes and (4.1) reduces to the expression 
conventionally used to define the ‘eddy viscosity’. It is well known (see, for 
example, Townsend 1956) that the assumption of constant eddy viscosity 
in most free turbulent flows (with due allowance for the intermittency near the 
outside edge) leads to velocity profiles in remarkably good agreement with experi- 
ment, and although this might not have been deduced from these expressions, it 
is certainly consistent with them. Of greater interest, however, is the magnitude 
of the ‘eddy viscosity’ found experimentally and the light that this sheds on the 
magnitude of the dimensionless number d. 
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Because of its importance in questions involving the aerodynamic generation 
of sound, the shear layer of a jet is one flow in which careful measurements have 
been made of the mean velocity profile, the turbulent intensities and the con- 
vected int’egral time scales. The experiments of Davies, Fisher & Barratt (1963) 
are most useful. From their observations, it appears that in the central region of 
the shear layer, the second term of (4.1) with z,, at - 00 is numerically small com- 
pared with the first, so that in this case, 

r(x) E dG0 dU/dz .  (4.2) 
They measured the integral time scale for longitudinal fluctuations and found 
that 0 N_ 3*2(dU/dz)-l at different points across the flow. If the corresponding 
quantity for the lateral fluctuations is not appreciably different, then (4.2) 
becomes simply 

The figures of table 1 are taken from Townsend’s (1956) book, the notation being 
modified slightly to conform to our present usage. The remarkable constancy 
of the ratio rl3.22 in this particular flow in the region -0 .25~  < z < 0 . 7 5 ~  

r ( z )  N_ 3 . 2 ~ ~ 2 2 .  (4.3) 

- 
z / x  r/u2 

- 0.50 0.41 
- 0.25 0.41 

0.00 0.39 
0.25 0.30 
0.50 0.23 
0.75 0.15 
1.00 0.10 

(Townsend) 
21 uz, r/uz 

(Townsend) 

0.0080 0.00328 
0.0165 0.00675 
0.0210 0.00820 
0.0215 0.00645 
0.0175 0.00400 
0.0125 0.00187 
0.0065 0.00065 

TABLE 1 

w2/ u; 
( Townsend) 

0.0060 
0.0085 
0.0100 
0.0090 
0.0050 
0.0025 
0.0015 

-- T d  _ -  
3 . 2 ~ ~  

0,170 
0.248 
0.256 
0.224 
0.250 
0.234 
0.134 

appears to support the theoretical ideas described here, the scatter about the 
mean value d = 0.24 being of the order 5 %. Outside this region, the flow is 
more highly intermittent and the mean turbulent intensity is small so that the 
ratios are less accurate. Moreover, the second term of (4.1) is no longer negligible 
here so that the approximation (4.2) is inadequate. It need be no surprise then 
that the values of the ratio 713.23 at z = - 0.50xandz = + 1 .00~  are significantly 
different from those in the central region. 

This value, d = 0-24, is then characteristic of the turbulent mixing layer of a 
jet. The corresponding number in other flows would be expected to be of the same 
order, though not necessarily identical because of a possibly different degree 
of anisotropy in the (x, y)-plane of the energy-containing eddies. It is unfortunate 
that measurements of the integral time scale 0 in other flows do not seem to  have 
been reported yet-it is certain that Davies, Fisher & Barratt’s simple relation 
between 0 and d Uldz cannot be true universally. The closest approach is found 
in the results of Favre, Gaviglio & Dumas (1957, 1958) on the turbulent 
boundary layer, but their space-time correlation measurements extend only to 
correlations of about 0.4, which is still too large to provide a sound estimate of 0. 
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There are also the surface pressure fluctuation measurements by Willmarth & 
Wooldridge (1962) and Corcos (1964) in which space-time correlations were made, 
but it would be hazardous to try to estimate from these the integral time scale of 
the w-velocity fluctuations a t  different points in the flow itself. Though one would 
expect to be of the order 0.24 in other flows, also, it  appears that confirmation 
(or denial !) of this expectation must await further measurement. 

Finally, it might be indicated how these results could be used as a basis for 
further hypothesis. In  the turbulent flow of a stratified fluid in which the mean 
density p is a function of x ,  the large scale ‘packages ’ of fluid will tend to oscillate 
about their mean leveI with the Brunt-Vaisala frequency 

where g is the gravitational acceleration. The time correlation between the vertical 
velocity fluctuations in a frame of reference moving with the local mean velocity 
might perhaps be supposed to be of the form f ( t )  cos Nt, where 

I O w f ( t ) d t  = 0 

the integral time scale is an unstratified flow. If N is of the order 0-1 or greater, 
the integral time scale in the stratified fluid 

O ( N )  = 1 w f ( t )  cos Ntdt 
0 

is considerably less than in the equivalent flow of a homogeneous fluid, so that the 
effective ‘eddy viscosity’ is immediately reduced. This in turn reduces the 
energy flux from the mean flow and the turbulent intensity, further reducing 
,ue. But the proper formulation of these ideas is still some distance away, and they 
will not be pursued here. 

I am indebted to  the Office of Naval Research for their support for part of this 
work under contract Nonr 4010 (05). Part was done a t  Hydronautics, Incorpor- 
ated under contract Nonr 4181 (00) and I am grateful to Mr M. P. Tulin for the 
stimulation of many conversations on this topic. 
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